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SUMMARY

Solutions of direct time-integration schemes for transient advection–diffusion–reaction problems that
converge in time to conventional semidiscrete formulations may be polluted at small time steps by
spurious spatial oscillations. This degradation is not an artifact of the time-marching scheme, but rather a
property of the solution of the semidiscrete Galerkin approximation itself. An analogy to steady advection–
diffusion–reaction problems with a modified reaction coefficient by the Rothe method of discretizing in time
prior to spatial discretization provides an upper bound on the time step for the onset of spatial instability.
Spatial stabilization removes this pathology, leading to stabilized implicit time-integration schemes that
are free of spurious oscillations at small time steps. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The common approach to transient analysis, called the method of lines, involves time integration of
a semidiscrete formulation, obtained by spatial approximation. Thus, the approximation is carried
out in two stages. First, spatial discretization, e.g. by standard finite element methods, leads to
the semidiscrete formulation (a system of coupled ordinary differential equations in time). Then,
temporal integration by time-marching schemes results in a system of algebraic equations at each
time level. One of the most widely used family of direct time-integration schemes for unsteady
transport phenomena governed by advection–diffusion–reaction equations is the generalized trape-
zoidal (or �) methods. The unconditionally stable, second-order accurate, Crank–Nicolson scheme
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(or trapezoidal rule) is, probably, the most commonly used implicit algorithm among the generalized
trapezoidal family methods.

It is well known that higher modes of semidiscrete formulations are approximated poorly
[1, Section 6.3]. As a result, algorithmic damping is often introduced in time-integration schemes
in order to remove the participation of high-frequency modal components [2–4]. However, as
the time step is reduced with a fixed mesh size, the deleterious effects of higher modes are
inevitably admitted into the computation, even in the presence of algorithmic damping [5]. Thus,
spurious spatial oscillations, along with attendant overshoot in time, may pollute the solution
at small time steps of all algorithms that converge in time to standard consistent semidiscrete
formulations [6, 7].

Conventional wisdom advocates that time step reduction be accompanied by corresponding
refinement of the spatial mesh. In fact, procedures for time-step selection for explicit methods
often advise against reducing time steps far below the critical values for temporal stability
[8, p. 510]. Indeed, a recent analysis of the truncation error shows that in some cases accuracy
degrades as the time step is reduced below a certain value [9]. Nevertheless, small time steps are
often necessary in practice.

Many scientific applications involve the analysis of interaction problems which couple several
physical phenomena, often with multiple time and length scales. For example, in typical reacting
flows the time scales of the non-equilibrium chemical reactions are much smaller than those of
the continuum transport [10, 11]. Extremely small time steps are required to resolve the chemistry,
yet an implicit time-integration scheme is often preferred to deal with the stiff behaviour of such
systems [12, Chapter IV]. Similar situations arise in fluid–solid interaction problems, where implicit
time marching schemes are employed for long time integration, yet the motion may dictate very
small time steps [13]. Several cases of spatial oscillations [14, 15] and instabilities [10, 11, 16, 17]
at small time steps have been observed. These spurious phenomena are often viewed as a violation
of basic qualitative characteristics, such as the maximum principle [18].

The present investigation is an extension of previous work on the pure parabolic problem of
diffusion [7], to include the effects of convection and reaction. The key idea is to employ the
Rothe method or the horizontal method of lines of first discretizing in time with a time-integration
scheme, leading to a family of steady differential equations which are then approximated spatially
on each discrete time level. This approach reveals that the time-discrete equation that is solved in
each time level of implicit schemes is, in fact, a Galerkin approximation of a steady equation with
a modified reaction coefficient, that can have destabilizing effects at small time steps. Standard
analysis of the steady equation (with a modified coefficient) provides an upper bound on the time
step for the onset of spatial instability. Any scheme that stabilizes the steady advection–diffusion–
reaction equation, e.g. [19–22] removes this pathology. Similar ideas are explored in the context
of enriched finite elements based on a multiscale approach [23].

Oscillations in transient computation were observed in [24], and essentially removed with a
two-parameter Petrov–Galerkin method. The present analysis associates the oscillations with small
time steps, provides explicit bounds on the time step for the onset of this pathology, and employs
multiscale stabilization to eliminate the instabilities.

The remainder of this paper is organized as follows. In Section 2, we consider the generalized
trapezoidal family of time-integration schemes for semidiscrete advection–diffusion–reaction.
Stability analysis of the time-discrete analog of this problem obtained by the Rothe method
in Section 3, characterizes the threshold of instability at small time steps, and introduces a stabi-
lization procedure for implicit time-integration schemes. Section 4 reports on several computations
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TRANSIENT TRANSPORT AT SMALL TIME STEPS 733

that demonstrate the presence of spatial oscillations at small time steps and their absence from the
spatially stabilized time integration. Conclusions are offered in Section 5.

2. ALGORITHMS FOR TRANSIENT ADVECTION–DIFFUSION–REACTION

Let �⊂ Rd be a d-dimensional, open, bounded spatial region with smooth boundary �. The open
time interval of length T>0 is (0, T ).

2.1. Semidiscrete Galerkin formulation

Consider the (homogeneous Dirichlet) transient advection–diffusion–reaction problem of finding
u(x, t), such that

u,t − ∇ · (�∇u) + a · ∇u − su = f in � × (0, T ) (1)

u = 0 on �× (0, T ) (2)

(x, 0) = u0(x), x∈ � (3)

Here, the known coefficients are the diffusivity �(x)>0, the flow velocity a(x), and the source
parameter s(x), which is positive for production and negative for dissipation or absorption. In
addition, f (x, t) is a prescribed load function, and u0 is the specified initial value. Generalization
of the results of the paper to problems with other types of boundary conditions is straightforward.

We partition � into non-overlapping regions (element domains, numbered with index e) in the
usual way. The semidiscrete Galerkin approximation is stated in terms of the set of functions which
do not depend on time Vh ⊂ H1

0 (�). The standard finite element method is finding uh(· , t) ∈Vh

such that ∀wh ∈Vh

(wh, u̇h) + a(wh, uh) = (wh, f ) (4)

(wh, uh(0))= (wh, u0) (5)

Here, x is suppressed as an argument of u, the superposed dot denotes time differentiation, and
(· , ·) is the L2(�) inner product. The form of the right-hand side assumes sufficiently smooth f .
The bilinear operator is

a(w, u) = (∇w, �∇u) + (w, a · ∇u) − (w, su) (6)

The matrix equations are obtained in the usual way (see, e.g. [8]). The functions wh and uh

are expressed in terms of standard finite element shape functions which are not time dependent,
whereas the unknown nodal values are time dependent.

The semidiscrete form of the initial/boundary-value problem for transient transport (1)–(3) is
the initial-value problem of finding the vector of unknown nodal values, d=d(t), satisfying the
coupled system of ordinary differential equations

Mḋ + Kd=F (7)

and initial conditions

d(0)= d0 (8)
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Here, M is the symmetric, positive-definite, mass matrix obtained from the first term on the
left-hand side of (4), K is the matrix obtained from the remaining terms on the left-hand side
of (4), F=F(t) is the prescribed load vector obtained from the right-hand side of (4), and ḋ is
the time derivative of d. The initial conditions d0 are usually taken as nodal values of the given
function u0(x).

Remark
The mass matrix that arises in the Galerkin semidiscrete approximation is the consistent mass
representation. This is the representation that is considered subsequently, unless specified otherwise.

2.2. Time integration: the generalized trapezoidal method

The generalized trapezoidal method for integrating the semidiscrete equation (7) from tn to
tn+1 = tn + �t is expressed in terms of dn and vn , the approximations to d(tn) and ḋ(tn),
respectively, as follows:

Mvn+1 + Kdn+1 =F(tn+1) (9)

dn+1 = d̃n+1 + ��tvn+1 (10)

Here the predictor is

d̃n+1 =dn + (1 − �)�tvn (11)

The generalized trapezoidal algorithms are a one-step, one-parameter (0���1) family of
methods including: the first-order accurate, conditionally stable, explicit (assuming M is lumped)
forward-Euler method (�= 0), the second-order accurate, unconditionally stable, implicit trape-
zoidal or midpoint rule, also known as the Crank–Nicolson scheme (� = 1/2), and the first-order
accurate, unconditionally stable, implicit backward-Euler method (�= 1).

We consider an implementation of the method in the form

(M + ��tK)vn+1 =F(tn+1) − Kd̃n+1 (12)

The initialization of the solution procedure is standard. At the beginning of each time step, the
terms on the right-hand side of (12) are known. The equation is solved for vn+1, and dn+1 is then
obtained from the update Equation (10).

3. STABILITY ANALYSIS: ROTHE FORMULATION

Standard implicit time-integration schemes of semidiscrete formulations for parabolic problems
violate the maximum principle at small time steps [6, 7, 18]. These pathologies can be characterized,
and later removed, by an alternative approach to the derivation of the discrete equations.

3.1. Steady model problem

The standard procedure of first discretizing in space to obtain the semidiscrete equation (7) and
then discretizing in time is called the method of lines [25]. An alternative approach is the Rothe
method [26] (or horizontal method of lines) of first discretizing in time and then in space on
each discrete time level. By this procedure, we discretize the original differential equation (1)
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TRANSIENT TRANSPORT AT SMALL TIME STEPS 735

with the generalized trapezoidal method time-integration scheme in terms of un(x) and vn(x), the
approximations to u(x, tn) and u,t (x, tn), respectively, as follows:

vn+1 − ∇ · (�∇un+1) + a · ∇un+1 − sun+1 = f (x, tn+1) (13)

un+1 = ũn+1 + �t�vn+1 (14)

Here the predictor is
ũn+1 = un + (1 − �)�tvn (15)

The Galerkin equation is expressed in terms of standard spatial finite element approximations

(wh, vhn+1) + a(wh, uhn+1) = (wh, f (tn+1)) (16)

Here, the bilinear operator is given by (6) and x is suppressed as an argument of f . Simple
substitution of the update equation (14) yields

(wh, vhn+1) + ��t a(wh, vhn+1) = (wh, f (tn+1)) − a(wh, ũhn+1) (17)

The Rothe form reveals that the time-discrete equation that is solved in each time step of implicit
schemes is, in fact, a Galerkin approximation of a steady advection–diffusion–reaction equation
with a modified source parameter and load, cf. (12). Note that the term containing the predictor is
integrated by parts in the standard discrete equation.

3.2. Spurious oscillations

Stability properties of Galerkin finite element approximation of the steady advection–diffusion–
reaction equation are known [27]. The numerical solution is characterized by several dimensionless
quantities: the element Péclet number � = |a|h/(2�) and the element Damköhler number � = sh/|a|,
as well as the Courant–Friedrichs–Lewy number CFL= |a|�t/h, a non-dimensional measure of
the time step. This additional quantity appears in the modified source parameter due to the implicit
time stepping of the semidiscrete equation.

The standard analysis, with the source parameter suitably modified, indicates that spurious
oscillations can occur in the solution when

CFL<CFLbound = 1

3�

(
1 − �

�
+ �

3

)−1

(18)

This is the upper bound on time steps for instability of the semidiscrete Galerkin equation of
transient advection–diffusion–reaction with a linear finite element spatial discretization, integrated
in time by the generalized trapezoidal method. Similar results may be obtained for other time-
integration algorithms.

The case of transient advection–diffusion is of particular interest. The bound is obtained by
simply eliminating the source parameter

CFLbound = 1

3�

�

1 − �
(19)

Clearly, this result applies to the diffusion-dominated regime �<1 (Figure 1). For the advection-
dominated regime ��1 there can be spurious oscillations at any time step, which is a classical
result from the analysis of the steady equation.
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Figure 1. The CFL upper bound (19) for instability of the semidiscrete Galerkin equation
of transient advection–diffusion with linear finite element spatial discretization, integrated in

time by the generalized trapezoidal method.

Remark
It would appear that spurious oscillations can arise at any time step for the forward-Euler algorithm
(� = 0). However, this scheme is usually combined with mass lumping, a pointwise representation
of the inertial term, in order to justify the use of this algorithm, which is conditionally stable in time.
Mass lumping modifies the underlying semidiscrete formulation and precludes spurious oscillations
in solutions obtained with linear elements [7, 28]. (See also recent work on selective lumping [29].)
Unfortunately, this property is not shared by all higher-order elements. Furthermore, while the
lumped representation is of the same order of spatial accuracy as the consistent representation on
uniform meshes, the spatial accuracy of the lumped representation can degrade on non-uniform
meshes, depending on the degree of variation in mesh size [30].

3.3. Stabilization

The Galerkin discretization (17) represents a steady advection–diffusion–reaction problem, which
can be written as a function of a modified bilinear operator

â(wh, vhn+1) = (wh, f̂ (tn+1)) (20)

where

â(w, u) = (∇w, �̂∇u) + (w, â · ∇u) − (w, ŝu) (21)

(w, f̂ (tn+1))= (w, f (tn+1)) − a(w, ũhn+1) (22)

and

�̃= ��t� (23)

ã= ��ta (24)

s̃ = ��t s − 1 (25)
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Note that the right-hand side of the Galerkin method (20) (wh, f̂ (tn+1)) contains the load f (tn+1)

plus the effect of the predictor ũhn+1 upon the velocity vn+1, namely a(w, ũhn+1). This term includes
the viscous contribution of the predictor in integrated-by-parts form.

In order to stabilize the Galerkin discretization (20), the combined adjoint stabilization method
[21] is implemented. This method adds two stabilization integrals to the Galerkin method (a least-
squares plus a gradient least-squares term), and can be interpreted as an approximation to the exact
variational multiscale method, where the cross moments of the element Green’s function have
been neglected. Each stabilization term possesses a parameter, adjusted for superconvergence of
the two amplification factors present in advection–diffusion–reaction equations. Thus, the method
results in nodally exact one-dimensional finite element solutions for problems considered here, for
any range of dimensionless parameters and constant load vector.

The stabilized variational formulation reads

â(wh, vhn+1) − (�0L̂
∗wh, L̂vhn+1 − f̂ (tn+1))�̃

−(�1∇L̂∗wh,∇L̂vhn+1 − ∇ f̂ (tn+1))�̃ = (wh, f̂ (tn+1)) (26)

where L̂ and L̂∗ denote, respectively, the standard differential operator and its adjoint, that is

L̂w =−∇ · (�̂∇w) + â · ∇w − ŝ (27)

L̂∗w = −∇ · (�̂∇w) − â · ∇w − ŝ (28)

The expression of the stabilization parameters �0, �1 can be found in [21].
Remark
Note that in (20), the Galerkin predictor diffusion contribution on the right-hand side emanates
naturally in integrated-by-parts form. This has an important impact on accuracy and the same
philosophy should be applied to the other predictor viscous terms on the stabilization integrals.
This treatment was also implicit in [7] for the transient diffusion problem. For comparison, the
method in [24] without this feature results in more dissipative numerical solutions.

In classical stabilization of semidiscrete transient equations, the time derivative is absent from
the augmented stabilizing space (see [31, 32] and references therein), although it may be accounted
for indirectly [33]. It is, however, recovered in the present method through the modified source
term in the residual, the augmented stabilizing weighting space and the stabilizing parameter. This
typically results in larger stabilization contributions.

4. NUMERICAL RESULTS

As examples of the preceding procedure, the following two transient advection–diffusion problems
exhibit oscillatory solutions with conventional time-marching schemes at small time steps even in
the diffusion-dominated regime. The proposed stabilization removes these pathologies.

4.1. Boundary layer

Consider the one-dimensional problem of a transient boundary layer in x∈(0, L), with boundary
conditions u(0, t) = 0 and u(L , t)=1. The initial condition is the smooth function u(x, 0)=u0(x)=1.
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Under these conditions, the analytical solution is given by

u(x, t) =
1 − exp

(ax
�

)
1 − exp

(
aL

�

)

+ exp

(
a

2�
x − a2

4�
t

)√
2

L

∞∑
i=1

{
4
√
2L�2i�

a2L2 + 4�2i2�2
exp

(
−
(

�i
√

�

L

)2

t

)
sin

(
�i

L
x

)}

(29)

The following computations compare the Galerkin solution with the transient stabilized
solution at � = 0.1. For CFL=CFLbound, Figure 2 shows that, according to the theory, there
are no oscillations for both, � = 1.0 and 0.5. The CFLbound above is based on the Galerkin
method.

StabilizedGalerkin
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Figure 2. Boundary layer. Detail of the Galerkin (left) and transient stabilized (right) solutions during the
first instances for �= 1 and 0.5 at CFL=CFLbound.
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Figure 3. Boundary layer. Detail of the Galerkin (left) and transient stabilized (right) solutions during the
first instances for �= 1 and 0.5 at CFL= 0.5CFLbound.

When the time step is decreased, for instance to CFL= 0.5CFLbound, then the Galerkin solution
shows the typical small time-step oscillations. These are eliminated by the transient stabilization
introduced in this paper (see Figure 3).

4.2. Transport of a diffused square wave

Next, consider the transport by convection and diffusion of a one-dimensional square wave. The
initial condition is depicted in Figure 4, a unit square pulse between xl = 0.2 and xr = 0.7. Lack
of smoothness is apparent at the corners of the pulse.

The analytical solution for homogeneous Dirichlet boundary conditions, valid before the pulse
reaches a boundary, can be approximated by

u(x, t) = 0.5(erf((x − at − xl)/
√
4�t) − erf((x − at − xr )/

√
4�t)) (30)
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Figure 4. Square wave. Initial condition.
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Figure 5. Square wave. Detail of the Galerkin (left) and transient stabilized (right) solutions during the
first instances for �= 1 and 0.5 at CFL=CFLbound.

As in the previous example, when CFL<CFLbound, small time step oscillations are induced in
the Galerkin solution. Again, the transient stabilization applied to the Rothe discretization is able
to get rid of them. This is demonstrated in Figures 5 and 6 for � = 0.1.
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Figure 6. Square wave. Detail of the Galerkin (left) and transient stabilized (right) solutions during the
first instances for �= 1 and 0.5 at CFL= 0.5CFLbound.

5. CONCLUSIONS

The present investigation extends previous work on spatial stability of transient diffusion at
small time steps to transient advection–diffusion–reaction problems. Solutions of the Galerkin
semidiscrete formulation may exhibit spatial oscillations, due to poor approximation of higher
modes. Consequently, all conventional direct time-integration schemes that are based on such
semidiscrete formulations and are convergent in time will eventually admit these pathologies as
the time step is reduced (with a fixed mesh size).

The Rothe method of first discretizing in time with a time-integration scheme, leads to a family
of steady differential equations which are then approximated spatially on each discrete time level.
This approach reveals that the time-discrete equation that is solved in each time level of implicit
schemes is, in fact, a Galerkin approximation of a steady equation with a modified reaction
coefficient, that can have destabilizing effects at small time steps. Standard analysis of the steady
equation (with a modified coefficient) provides an upper bound on the time step for the onset of
spatial instability. Any scheme that stabilizes the steady equation removes this pathology.

Future work will address the stabilization of advection- and reaction-dominated phenomena, as
well as implementational issues such as the form of the time-marching schemes and initialization.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:731–743
DOI: 10.1002/fld



742 I. HARARI AND G. HAUKE

ACKNOWLEDGEMENTS

The authors acknowledge conversations with Pavel Bochev, Victor Calo, Alvaro L. G. A. Coutinho,
Thomas J. R. Hughes, and Arif Masud.

REFERENCES

1. Strang G, Fix GJ. An Analysis of the Finite Element Method. Prentice-Hall: Englewood Cliffs, NJ, 1973.
2. Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation:

the generalized-� method. Journal of Applied Mechanics (ASME) 1993; 60(2):371–375.
3. Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural

dynamics. Earthquake Engineering Structural Dynamics 1977; 5(3):283–292.
4. Jansen KE, Whiting CH, Hulbert GM. A generalized-� method for integrating the filtered Navier–Stokes equations

with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering 2000; 190
(3–4):305–319. Fourth Japan—US Symposium on Finite Element Methods in Large-scale Computational Fluid
Dynamics, Tokyo, 1998.

5. Krenk S. State–space time integration with energy control and fourth-order accuracy for linear dynamic systems.
International Journal for Numerical Methods in Engineering 2006; 65(5):595–619.

6. Fujii H. Some remarks on finite element analysis of time-dependent field problems. In Theory and Practice in
Finite Element Structural Analysis, Yamada Y, Gallagher RH (eds). University of Tokyo Press: Tokyo, 1973;
91–106.

7. Harari I. Stability of semidiscrete formulations for parabolic problems at small time steps. Computer Methods
in Applied Mechanics and Engineering 2004; 193(15–16):1491–1516.

8. Hughes TJR. The Finite Element Method. Dover: Mineola, NY, 2000 (Corrected reprint of the 1987 original).
9. Yang C, Gu Y. Minimum time-step criteria for the Galerkin finite element methods applied to one-dimensional

parabolic partial differential equations. Numerical Methods for Partial Differential Equations 2006; 22(2):259–273.
10. Bochev PB, Gunzburger MD, Shadid JN. On inf–sup stabilized finite element methods for transient problems.

Computer Methods in Applied Mechanics and Engineering 2004; 193(15–16):1471–1489.
11. Bochev PB, Shadid JN, Gunzburger MD. On stabilized finite element methods for transient problems with

varying time scales. In Proceedings of the Fifth World Congress (WCCM V), Mang HA, Rammerstorfer FG,
Eberhardsteiner J (eds). Vienna University of Technology: Austria, 2002.

12. Hairer E, Wanner G. Solving Ordinary Differential Equations. II. Stiff and Differential-algebraic Problems.
Springer Series in Computational Mathematics, vol. 14. Springer: Berlin, 1991.

13. Masud A. Private communication. 2003.
14. Bradford SF, Katopodes ND. The anti-dissipative, non-monotone behavior of Petrov–Galerkin upwinding.

International Journal for Numerical Methods in Fluids 2000; 33(4):583–608.
15. Fabritz JE. A two-dimensional numerical model for simulating the movement and biodegradation of contaminants

in a saturated aquifer. Master’s Thesis, University of Washington, Seattle, Washington, 1995.
16. Behr M. Private communication. 2002.
17. Rannacher R. Finite element solution of diffusion problems with irregular data. Numerische Mathematik 1984;

43(2):309–327.
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